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Abstract

Conditions and a criterion for the presence of minimal components in the foliation of a MorseJsfama
smooth closed oriented manifol are given in terms of (1) the maximum rank of a subgroupi(M, Z) with

trivial cup-product, (2) kdiw], and (3) rko def rkim[w], where[w] is the integration map.
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1. Introduction

Let M be a connected smooth closed orientedimensional manifold an@ a Morse form onV, i.e.,
a closed 1-form with Morse singularities (locally the differential of a Morse function). This form defines
a foliation ,, on M\ Singw, where Sing are the form’s singularities.

The problem of studying the topology of such foliations was set up by S. Noy&oas far back as
in early 80s in connection with their numerous applications in phyé@4d.1] which have been recently
impulsed by the new advances in the mathematical thi2ogy.

The topology of a Morse form foliation can be described as follows. Its leaves are either compact,
non-compact compactifiable, or non-compactifiable. A lea$ calledcompactifiable if y U Singw is
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compact. There is a finite number of non-compact compactifiable leaves; thus their union together with
Singw has zero measure. The restMf consists of a finite number of open areas covered by compact
leaves (calledgnaximal components) or non-compactifiable leaves (callednimal components).

Compact leaves have neat propertjgs All leaves in a maximal component are diffeomorphic.
A maximal component is an open cylinder over any its leaf. The form’s integral by any cycle lying
in a maximal component is zero.

Non-compactifiable leaves, on the contrary, have very complex behdtjolach such leaf is dense
in its minimal component. A minimal component can cover a rather complex skf;ifor any M
with Betti numberg(M) > 2 there exists a foliation whose only minimal component covers the whole
M\ Singw. A minimal component contains at least two homologically independent cycles with non-
commensurable integra8].

In this paper we consider conditions for a foliation to have minimal components.

The form’s singularities give little information on the foliation topolody, is compact (i.e., all its
leaves are compact) if and only if all singularities:oére spherical. Otherwise there always exists a form
with the same singularities of the same indices but with the foliation without minimal compd@&hts

A more useful characteristic of the form is itank rkw & rkim[w], where[w](z) = fa) eR,ie.,
the rank of its group of periods; it is a cohomologous invariant. & kK 1, the foliation has no minimal
componentg9]. For rkw > 2, the foliation of a non-singular form is minimal and uniquely ergodic;
however, for forms with singularities the situation is much more complicated.

In any cohomology class with gk > 2 there is a form with a minimal foliatiofi]. If the cohomology
class ofw, rkw > 2, contains a non-singular form, thef), has a minimal component, though—unlike
non-singular case—it is not necessarily minif#gl Existence of non-singular form in a given cohomol-
ogy class was studied [B]; however, the only manifolds allowing non-singular closed forms are bundles
over S [13].

We show that for large enoughdkany foliation has a minimal component—namely, foork (M),
whereh (M) is the maximum rank of aisotropic (i.e., with trivial cup-product) subgroup iH(M, Z)
(Theorem 13. In particular, the foliation of a Morse form in general position on a manifold with non-
trivial cup-product has a minimal componeiihgorem 18.

The mentioned’heorem 13jives a simple yet powerful practical sufficient condition for the presence
of minimal components. Methods of calculatilagV/) for many important manifolds can be foundj;
the most useful of them are listed Remark 14 For example,F,, on M§ with rke > g = h(Mgz) has a
minimal componentExample 16, so doesF,, on 7" (torus) with rkw > 1= h(T") (Example 15.

Yet the group kdww] gives more fine-grained information on the foliation structure than the mere
rkw = rkim[w]. We call a subgrou; € H;(M) parallel if there exists an isotropic subgroup C
HY(M,7Z) such that any homomorphis: G — Z is realized by some element &f. If any of the
following equivalent conditions holds thef, has a minimal componenteorem 1)

(i) For any parallel subgroug it holds rkG — rk(G N kerfw]) < rkw (note that non-strict inequality
here holds for any group).
(i) The same holds for any parallel subgroGpsuch thatG N kefw] = 0.
(iif) The same holds for any maximal parallel subgra@p
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Finally, the foliation F,, has a minimal component if and only if there existe H,(M) \ kef{w]
such that o [y;] = O (intersection index) for all (compact) leavgs . .., yu (), One from each maximal
componentTheorem 7.

Note that cohomologous invariants @falone do not give much information on the presence of min-
imal components, especially when it comes to necessary conditions (for any form with 2kthere is
a cohomologous form with minimal foliatidd]). So we had to bring into consideration some character-
istics of the manifold§ (M), parallel subgroups) and the foliatiop ).

The paper is organized as follows. Sect®introduces some definitions and facts connected with
Morse form foliation. Auxiliary Sectior8 is devoted to expressingl;(M) in terms of the foliation
structure. In Sectiod we give a criterionTheorem J and a necessary condition for a foliation to have a
minimal component in terms of Kes]. Finally, in Sectiorb we give sufficient conditions for a foliation
to have a minimal component in terms of ke} (Theorem 1), #(M) (Theorem 13 and cup-product
(Theorem 13

2. A Morseform foliation

In this section we introduce, for future reference, some useful notions and facts about Morse forms
and their foliations.
Recall thatM is a connected smooth closed orientedimensional manifoldyz > 2. A closed 1-form
w on M is called aMorse form if it is locally the differential of a Morse function. Sing= {p € M |
w(p) = 0} denotes the set of its singularities; this set is finite since the singularities are isolatéfl and
is compact. On\ Singw the form defines a foliatiotF,,.

Definition 1. A leaf y € F,, is calledcompactifiable if y U Singw is compact; otherwise it is called
non-compactifiable.

Note that a compact leaf is compactifiable. The numibép) of non-compact compactifiable leaves
yl.o is finite and can be estimated in terms of the number of singularitieg 8f.

Definition 2. A connected componegtof the union of compact leaves is callg@ximal component of
the foliation.

A maximal component is open; the numbéiw) of maximal components is finite and can be esti-

mated in terms of homological characteristicsWbfand the number of singularities of[8].
Consider the following decomposition into mutually disjoint sets:

M(w)
M:(UC,-)UA, (1)
i=1

where(C; are all maximal components and

m(w) K(w)
A= ( U c;“i"> U ( U yf’) U Singow, 2)
i=1 i=1
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Fig. 1. Decompositiolfl) and the corresponding foliation graph.

CMn" being all minimal components of,, andm(w) being their number. The closed s#thas a finite
number of connected components.

If Singw = @ then F,, is either minimal or compact. In the latter case it has exactly one maximal
component = M, which is a bundle oves* with fibery e F, [13].

In the rest of this paper we suppose Sing ¢. In this case each maximal componépts a cylinder
over a compact leaf:

Ci = Yi X (0, 1)7 (3)

where the diffeomorphism maps to leaves ofF,; this map can be continuously extendedytox
[0, 1] [8]. SincedC; € A consists of one or two connected components, €acidjoints one or two
of A;. Therefore the decompositidt) allows representing/ as thefoliation graph I"—a connected
pseudograph (a graph admitting multiple loops and edges) with €tlga®l verticesA ;; an edge’; is
incident to a vertex\; if 3C; N A; # 0, seeFig. 1

Definition 3. The groupH,, generated by the homology classes of all compact leaves is called the ho-
mology group of the foliation.

Since M is closed and oriented, the grouf),_1(M) is finitely generated and free; therefore so is
Ha) - Hn—l(M)-
A set of elements generating a free group might not contain its basisZe=g(2, 3). However:

Theorem 4. In H,, there exists a basis e consisting of homology classes of leaves. ¢ = {[y1], ..., [V},
Vi € fw.

Proof. Consider a spanning tree of I" and the corresponding chords, ..., i,,. We will show that
e={ly1l, ..., [yn]} is the desired basis, wheyeis any leaf in the maximal componehlt=y; x (0, 1)
(all leaves in a maximal component are homologous).

(i) The systene is independent. Indeed, letbe a cycle in the foliation graph':

Z2=(p1, X1, ..., Ps, Xg, Ps41)s  Ds+1= P1,



|. Gelbukh / Differential Geometry and its Applications 22 (2005) 189-198 193

wherex; # x; are edges connecting vertices p; 1. Forz, a closed curve in M can be (non-uniquely)
constructed from the elements of the cylinders- y; x (0, 1) connected by segments lying in = A;;
obviously[a] o [y;]1=1.

For the chordsi,, ..., h, a system of cycles,,...,z, in I can be constructed such that edgh
belongs to exactly one cyclg; denotexy, ..., «,, the corresponding closed curvesi. Then given
> inilyi1=0, forany; itholds 0= [«;] 0 D, ni[yi] =n;.

(i) (e) = H,. Indeed, consider a leaf such that its maximal componext¢ {#,;}. Thenx € T is a
bridge connecting two different (non-empty) connected compon&ntsx =7"UT",i.e.,I" — (x U
{h;}) =T UT". The latter means that U {y;} separate the two corresponding submanifoldafini.e.,

[¥1+ >, £lv1=0. O

In fact from the proof it follows that for every compact leaf the coordinates ofy] in the basis
belong to{+1, 0}.

3. The manifold’s homologies and the foliation

Recall thaCy =y, x (0,1), k=1, ..., M(w), are all maximal components aud= M \ (|, Cx). We
will study the relationship betweeH; (M) and the decompositiofl).

Theorem 5. Let z € Hy(M). If zo [y ]=0forall k=1,..., M(w) thenz € i, H1(A), wherei: A < M.

Proof. Lety,:ye x I — M, I = (-1, 1) be the diffeomorphisms froif8), with y;, = ¢, (3, 0) C M.
Below we will show that is realized by a closed curve that does not intersect withyang@iven this,
considerM’ = M \ (U, vo); z € juHi(M'"), j:M' — M. By (1),

M =AU (U‘Pk()/k x (=1,0)) Uy x (O, 1)))-
k

Thus A is the deformation retract gff’, the corresponding homotopy af’ \ A beingr (¢ (x x t)) =
or(x x (s + (L£5)1)); recall thaty, can be continuously extendedjtpx [—1, 1] with y, x {£1} C A.
This proves the theorem.

It remains to show that can be realized by a curve that does not intersect withanpenotey = y;
and¢ = ¢,. Let the orientation of be such thap(x, ) goes along its normal vector aincreases.

Consider a closed curve realizingz, seeFig. 2 Without loss of generality we can assume thas
transverse tgr = y; and even that in a small enough neighborhét@ ) it goes along the elemeiitof
the cylinder imp.

Sincela]o[y]=0,itholdsa Ny = U,-Zﬁl P;, where)_sgnP; = 0. Suppose # 0. ConsiderpP;, P; 1
such that sgi; # sgnP, 1 and letP,*, P15 P°, Pi € U(y) Na, wherePj = ¢(P;, ). Sincey is

1

connected, there is a cungP; .1 C y. Obviously,[«] = [«'] + [@”], where

o = (O‘ \ (Pi_SPi+8 U Pi_:‘elpi;i)) U Pi+8Pi_:-81 UPGP

and

I __ p—& pteEpte p—¢€.
o =P P PP
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+1 I
- ; o
Pr+a QX 4-—) \P;f]
(or R
0 L ‘ ‘ Pi+1/],
Py Lo < P
oS
-1

Fig. 2. Removing intersection points @fandy .

here PP = @(P;Pis1,+¢) and P P ° = —@(P; P41, —¢). However, [¢”] = 0 sincea” is

homotopy-equivalent t&; P, ;.
The new curver’ has 2 — 2 intersection points witly = y,. Induction byp and then by finishes
the proof. O

Theorem6.Lete = {[y1],...,[vnl}, vi € Fo,beabassof H, C H,_1(M), De = {D[y1],..., Dly.]} C
Hq(M) asystemof dual cycles, i.e., [y;] o D[y;]1=6;;, and DH,, = (De). Then

Hi(M) = (DHw» i*Hl(A))-
Existence of follows from Theorem 4
Proof. Letz € Hi(M) andn; = z o [y;]. Consider the cycle’ =z — ) n; D[y;]. Thenz' o [y;] =0 for

anyi =1, ..., m and therefore forany=1, ..., M(w). By Theorem 5z’ € i, H,(A). O

4. Criterion and a necessary condition

Consider the mapw]: H1 (M) — R, [w](z) = fza) Define rko & rkim[w]; obviously, rkkefw] +
rkw = B1(M), the Betti number.

For a subgrougd € H,_1(M), denoteH* € H,(M) the subgroup* = {z € Hi(M) | z o H = 0}.
Note thatH; C H, implies Hzft C Hf.
Theorem 7. F,, hasa minimal component iff Hof Z kerw].

Proof. SupposeF,, has no minimal components, so ti§2} is reduced to

K(w)
A= ( U yl.0> U Singw.
i=1

By Theorem 5Haf =i, H(A). Sincefza) =0 foranyz €i,Hi(A), we haveHj C kerw].
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Suppose nowF,, has a minimal componewnt. Considerp € A and the leaj, > p. Through this point,
in some its neighborhool, C A a (local) integral curvep C A of the vector fiel, » (&) =1, can be
drawn. Sincep is transverse to the leaves and the Igafs dense inA, there exists a poinj € y, N g,
g # p.Letl C V, C A be the segment of the integral curve between the pegirtadg. The leafy, is
connected, therefore there exists a cuive y, joining the pointsp andg. Thenc=1UJ C Ais a
closed curve and. = [, w # 0. Sincelc] o H,, =0, we haveH} Z kellw]. O

This implies a necessary condition 6y, to have a minimal component:

Theorem 8. If F,, hasa minimal component then for any set of compact leaves yx, ..., y; € F,, it holds
(Iyal. ... ) E kerle].

Example 9 [6]. If a Morse form foliation onMg2 hasg homologically independent compact leaves then
it has no minimal components. Indeed, chopag, .. ., [y,], D[y1l, ..., D[y,] (dual 1-cycles) as a basis
of Hi(M?). Let H = ([y1].....[y,]). Since[yi] o Dly;] = &;;, H* = H. Obviously, H C keffw]. By
Theorem &he foliation has no minimal components.

5. Sufficient conditions
We call a subgroug? € H*(M, Z) isotropic ifu — u’ = 0 (cup-product) for any, u’ € H.

Definition 10. A subgroupG < Hy(M) is called parallel if there exists an isotropic subgradpc
HY(M,Z) such that any homomorphistn: G — Z is realized by an element d@f, i.e., there exists
u € H such thaut|g = ¢.

Theorem 11. If any of the following equivalent conditions holds then F,, has a minimal component:

(i) For any parallel subgroup G it holds
kG — k(G Nkefw]) < rkw; 4)

(ii) Inequality (4) holds for any parallel subgroup G such that G Nkeffw] = 0;
(iii) Inequality (4) holds for any maximal parallel subgroup G.

Note that non-strict inequality i(#) holds for any subgroug and any mapw] out of general group-
theoretic considerations.

Proof. Condition (i) implies existence of a minimal component. Indeed, supf@séas no mini-
mal components. Consider a grotp= DH, = (D[y1],..., D[y.]), where[y1],...,[y.] is a basis
in H,. By Theorem 6 rkw = rkG — rk(G N kefw]). However,G = DH,, is parallel. Indeed, asso-
ciate with Hom{D H,,, Z) the subgroupgd € HY(M,Z), H = (ux, ..., u,), whereu;(z) = [y;] o z. Let
D:HYM,Z) — H,_1(M) be Poincaré duality map. TheR(u; — uj) =Du;oDuj =[y]oly;]l=
[vi Ny;1=0sincey; Ny; =¥ fori # j; thusH is isotropic.
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(i) = (i). Let G be a parallel subgrouf; = G’ & (G Nker{w]) for some (parallelG’; then rkG —
rk(G Nkefw]) =rk G’ < rkw by (ii).

(iii) = (ii). Let G be a parallel subgroug; N kerfw] = 0. For a maximal parallel subgroup > G,
chooseH’ O G such thatd = H' @ (H Nkef{w]). Then rkG <tk H' =rk H — rk(H Nkefw]) < rkw

by (ii). O
Example 12. Let M = T2 # T} (3-dimensional tori), rko = 2, and kefw] 2 Hy(T;). For any parallel
subgroupG such thatG Nkerfw] = 0 it holds rkG = 1. By Theorem 11ii), F,, has a minimal component.

The following Theorem 13gives a sufficient condition simpler and more practical, though rougher,
thanTheorem 11

Theorem 13. Let #(M) be the maximum rank of an isotropic subgroup in HX(M, Z). If rkew > h(M)
then F,, hasa minimal component.

Proof. Since for any parallel subgrouff it holds rkH < h(M), the theorem follows fronTheo-
rem1Xi). O

Remark 14. Some methods of calculatiig M) in terms of Betti numberg; andg, can be found iri7],
for instance:

(i) Forr =rkker— (cup-productd*(M,Z) x HX(M,7Z) — H?*(M, 7)),

B1+ Bor gh(M)gﬁlﬁ2+r

B2+1 Ba+1"

In particular, if3, = 1 thenh (M) = 3(B1+ r); if r = By thenh(M) = By;
(ii) If — is surjective, then

h(M) < 1 1y’ 2B2;
(M)sr+5+ (;81_’"_5) — 2f2;

(i) For the product,
h(M1 x M) = max{h(M1), h(M>)};
(iv) Forthe connected sum with dim; > 2,
h(My# My) = h(My) + h(M>).

Example 15. For a torusT™” it holds#(7T") = 1 and rkw < n. The foliation has a minimal component if
(Theorem 13and only if[9] rkw > 1.

On a torus, rkv characterizes the topology of the foliation. This is, though, not always the case:

Example 16. For Mg? it holds h(Mgz) = g and rko < 2g. The foliation has no minimal components if
rkw < 1[9] and has a minimal componentgf< rk o < 2g (Theorem 13 However, if 2< rkw < g, the
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topology of the foliation may be quite different even in the same cohomology class. For instance, while in
any cohomology class with ek > 2 there exists a form with minimal foliatigid], for any 1< rkw < g
there existsF,, without minimal components.

Indeed, consideg tori 7; = M/ x st M= S, with a forme; = A; dt on T;, wherer is the coordinate
along thes*; 7, is compact. This form can be locally transformed into a fesfrwith some spherical
singularities. Using small spheres around these singularities, a connecte’dgsw#f:l T; can be con-
structed withw; smoothly pasted together into a formon Mé?; 1<rkw =rk{);} < g and F, has no
minimal components.

Consider a Morse form in general position, i.e., with all periods being incommensurahle: rk
B1(M). The foliation of such a form can have no minimal components: for exampbe(M) = 0 then
all closed forms orM are exact. What is more, for any givere 3 andk > 0 there exists a manifolgi,
dimM =n andB1(M) =k, with a formw in general position such thaf, has no minimal components:

Example 17. The manifoldM = #_, M; andw constructed as iExample 1§M; standing for7; and M

for M§) with M/ = $"~1 and rk;} = k have the desired properties. Note that hgy€/) = 0; however,

by appropriate choice ¥/}, f1(M7) = 0, a similar example can be constructed for any given set of Betti
numbers.

Theorem 18. Let w be a Morse formin general position. If —: HY(M,Z) x HY(M,Z) — H*(M,7) is
non-trivial then F,, hasa minimal component.

Proof. If — is non-trivial thenh(M) < B1(M) = rkw. By Theorem 13 F, has a minimal compo-
nent. O

In addition, onMg2 all compact leaves af-,, with @ in general position are homologically trivial.
Indeed, considelry] = Y n;z;, where{z;} is the basis of cycles. Sincﬁ; w=)n fz w=0 andei a)
are incommensurable, al] = 0.
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